skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sargsyan, Khachik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Ground heat flux (G0) is a key component of the land‐surface energy balance of high‐latitude regions. Despite its crucial role in controlling permafrost degradation due to global warming,G0is sparsely measured and not well represented in the outputs of global scale model simulation. In this study, an analytical heat transfer model is tested to reconstructG0across seasons using soil temperature series from field measurements, Global Climate Model, and climate reanalysis outputs. The probability density functions of ground heat flux and of model parameters are inferred using availableG0data (measured or modeled) for snow‐free period as a reference. When observedG0is not available, a numerical model is applied using estimates of surface heat flux (dependent on parameters) as the top boundary condition. These estimates (and thus the corresponding parameters) are verified by comparing the distributions of simulated and measured soil temperature at several depths. Aided by state‐of‐the‐art uncertainty quantification methods, the developedG0reconstruction approach provides novel means for assessing the probabilistic structure of the ground heat flux for regional permafrost change studies. 
    more » « less
  2. Abstract This study develops a novel general framework to project the permafrost fate with rigorous uncertainty quantification to assess dominant sources. Borehole temperature records from three sites in the Russian western Arctic are used to constrain the uncertainty of a high‐fidelity freeze‐thaw model. Projections from 9 Global Climate Models (GCM) are stochastically downscaled to generate future trajectories of surface ground heat flux. Under the two emission scenarios SSP2‐4.5 and SSP5‐8.5, the projected average thawing depths by 2100 vary from 0.4 to 14.4 m or 2.1 to 17.7 m, and the increase in the top 10 m average temperature from 2015 to 2100 is 1.2–2.7°C or 1.9–3.0°C. The results show that the freeze‐thaw model uncertainty can sometimes dominate over that of GCM outputs, calling for site‐specific information to improve model accuracy. The framework is applicable for understanding permafrost degradation and related uncertainties at larger scales. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  3. Abstract This paper describes the atmospheric component of the US Department of Energy's Energy Exascale Earth System Model (E3SM) version 3. Significant updates have been made to the atmospheric physics compared to earlier versions. Specifically, interactive gas chemistry has been implemented, along with improved representations of aerosols and dust emissions. A new stratiform cloud microphysics scheme more physically treats ice processes and aerosol‐cloud interactions. The deep convection parameterization has been largely improved with sophisticated microphysics for convective clouds, making model convection sensitive to large‐scale dynamics, and incorporating the dynamical and physical effects of organized mesoscale convection. Improvements in aerosol wet removal processes and parameter re‐tuning of key aerosol and cloud processes have improved model aerosol radiative forcing. The model's vertical resolution has increased from 72 to 80 layers with the extra eight layers added in the lower stratosphere to better simulate the Quasi‐Biennial Oscillation. These improvements have enhanced E3SM's capability to couple aerosol, chemistry, and biogeochemistry and reduced some long‐standing biases in simulating tropical variability. Compared to its predecessors, the model shows a much stronger signal for the Madden‐Julian Oscillation, Kelvin waves, mixed Rossby‐gravity waves, and eastward inertia‐gravity waves. Aerosol radiative forcing has been considerably reduced and is now better aligned with community best estimates, leading to significantly improved skill in simulating historical temperature records. Its simulated mean‐state climate is largely comparable to E3SMv2, but with some notable degradation in shortwave cloud radiative effect, precipitable water, and surface wind stress, which will be addressed in future updates. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026